Kognitionspsychologie II: Session 8 Neural basis of motivation Loreen Tisdall, FS 2025 Version: April 22, 2025 ## Semester overview | # | Date | Topic | Slides | Instructor | |----|------------|---|--------|------------| | 1 | 18.02.2025 | Emotion: What is an emotion? | pdf | Mata | | 2 | 25.02.2025 | Emotion: What is an emotion? (continued) | pdf | Mata | | 3 | 18.03.2025 | Emotion: Neural bases | pdf | Tisdall | | 4 | 25.03.2025 | Emotion: Regulation | pdf | Mata | | 5 | 01.04.2025 | Emotion: Well-being | pdf | Mata | | 6 | 08.04.2025 | Motivation: What is motivation? | pdf | Mata | | 7 | 15.04.2025 | Motivation: Extrinsic vs intrinsic motivation | pdf | Mata | | 8 | 29.04.2025 | Motivation: Neural bases | | Tisdall | | 9 | 06.05.2025 | Motivation: Cooperation and morality | | Theisen | | 10 | 13.05.2025 | Applications | | Mata | | 11 | 20.05.2025 | Wrap-up and Q&A | | Mata | | 12 | 03.06.2025 | Exam (DSBG Neubau) | | | | 13 | 21.07.2025 | Repeat Exam (Biozentrum) | | | | | | | | | ## Learning Objectives - Describe different methods (including comparative approaches) used to study the neural substrates of motivation - Recognize the value of a systems-level approach to understanding the neural basis of motivation, particularly how motivation emerges from the integration of multiple brain systems - Describe key neural components of motivation and explain how interactions between neural systems contribute to integrated motivational processes ## Recap: What is motivation? Image created with AI (ChatGPT 4o, April 2025 : the act or process of giving someone **a reason for doing something**; the act or process of motivating someone : the condition of being **eager to act or work;** the condition of being motivated : a force or influence that **causes** someone to do something ## Recap: What are the 3 types of motivation theories? Maslow (1943) Harlow (1958) Gollwitzer (1999) #### **Content:** individual motives, traits, and motivations #### **Context:** features of the job, role, environment #### **Process:** mechanisms involved in individual choices and striving ## Today: Neural substrates of motivation Maslow (1943) Harlow (1958) #### **Content:** individual motives, traits, and motivations #### **Context:** features of the job, role environment #### **Process:** mechanisms involved in individual choices and striving ### Your turn! Image created with AI (ChatGPT 4o, April 2025 What methods do (neuro)scientists have at their disposal to investigate the brain basis of motivation? Discuss with your neighbour(s) ~2-3 minutes # Approaches to studying the neural substrates of motivation (comprehensive but by no means exhaustive!) | Approach | What it measures / infers / does | Strengths | Limitations | Example use | |--|---|--|--|---| | fMRI (functional Magnetic
Resonance Imaging) | Brain activity via blood oxygenation (BOLD signal) | High spatial resolution; non-invasive | Low temporal resolution; indirect neural activity | NAcc activation during reward anticipation | | sMRI (structural Magnetic
Resonance Imaging, e.g., DWI) | Anatomical connectivity and microstructural properties of white matter tracts | Can map large-scale brain networks; non-invasive | Mechanistic interpretations rely on models of structure-function relationships | Identifying connectivity disruptions in addiction | | PET (Positron Emission
Tomography) | Neurochemical processes (e.g., dopamine binding) | Targets specific neuro-
transmitters | Minimally invasive; low temporal resolution | Mapping dopamine in reward circuits | | EEG (Electroencephalography) /
ERP (Event-Related Potentials) | Electrical brain signals from the scalp | High temporal resolution; non-invasive | Poor spatial resolution | Feedback-related negativity in reward tasks | | Lesion studies in patient groups | Behavioral/cognitive/affective deficits after brain damage | Shows necessity of brain areas | Lesions often imprecise or diffuse | OFC damage disrupts value-based decision-making | | TMS (Transcranial
Magnetic Stimulation) | Temporarily disrupts or enhances activity in specific regions | Causal inference in humans; non-invasive | Limited to surface areas;
moderate spatial resolution | Disrupting DLPFC affects delay discounting | | Pharmacological manipulations | Alters neurotransmitter activity (e.g., dopamine agonists) | Links brain chemistry to motivational behavior | Systemic effects;
limited brain specificity | Dopaminergic drugs increase effort investment | | Computational modeling
+ imaging | Infers cognitive variables (e.g., value, prediction error) | Bridges behavior, theory, and neural activity | Complex;
model-dependent | Prediction error signals in ventral striatum | | Animal models (e.g., electrophysiology, optogenetics, lesions) | Direct manipulation/ recording of brain activity | Precise; allows causal inference | May not generalize to humans | Stimulating VTA increases motivated behavior | ### Anatomical orientation: The "motivational" brain - ☐ Motivation emerges from the interaction of **reward systems** (what's worth pursuing), **control systems** (how to pursue it), and **interoceptive / cognitive (appraisal-based) systems** (how we feel about it) - ☐ Think of the motivational brain as a **network of systems**, rather than a single system! ## A closer look: Reward circuitry "Although cells in many brain regions respond to reward, the cortical-basal ganglia circuit is at the heart of the reward system. The key structures in this network are the anterior cingulate cortex, the orbital prefrontal cortex, the ventral striatum, the ventral pallidum, and the midbrain dopamine neurons. In addition, other structures, including the **dorsal prefrontal cortex, amygdala, hippocampus, thalamus,** and **lateral habenular nucleus,** and specific **brainstem structures** such as the pedunculopontine nucleus, and the raphe nucleus, are **key components in regulating the reward circuit.** [...] Advances in neuroimaging techniques allow better spatial and temporal resolution. These studies now demonstrate that human functional and structural imaging results map increasingly close to primate anatomy." ## A closer look: Are all rewards processed equally? #### **Single study results:** "The acquisition of one's good reputation robustly activated reward-related brain areas, notably the striatum, and these overlapped with the areas activated by monetary rewards. Our findings support the idea of a "common neural currency" for rewards and represent an important first step toward a neural explanation for complex human social behaviors." ## A closer look: Are all rewards processed equally? #### **Meta-analytic consensus:** "Both primary and monetary incentives elicited SV responses in the same brain regions. This aspect of our results aligns with an emerging consensus that a **unitary neural system**, including regions of striatum and VMPFC, represents SV across different categories of goods." "[...] suggests that a reward that is merely signaled (e.g., money) is evaluated similarly to one that is actually consumed (e.g., juice) [...]" Bartra, O., McGuire, J. T., & Kable, J. W. (2013). The valuation system: a coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. *Neuroimage*, 76, 412-427. ## A closer look: Subjective value signal ("want/not want"?) #### **Meta-analytic consensus:** "An effect was coded as positive if a greater BOLD response was observed for more rewarding (or less aversive) outcomes; it was coded as negative if a greater BOLD response was observed for less rewarding (or more aversive) outcomes." "We observed a greater density of positive than negative effects in the VMPFC, PCC, and striatum. We observed overlapping significant densities for both positive and negative effects in DMPFC, thalamus, striatum, and bilateral anterior insula." "In summary, some brain regions showed both positively and negatively signed effects of SV on BOLD across studies, while other regions showed positive effects only." ## A closer look: Reward and punishment? #### **Meta-analytic consensus:** "The co-occurrence of positive and negative effects in the same brain regions may initially appear counterintuitive." "Pleasant experiences and monetary gains counted as rewards, while aversive experiences and monetary losses counted as penalties." "A brain region with a nonlinear SV response (pattern B in Figure 1) would be expected to show both positive effects for rewards and negative effects for penalties. Consistent with this, regions of bilateral insula and striatum were significant in a conjunction test evaluating overlap between these two categories." ### Anatomical orientation: The "motivational" brain - ☐ Motivation emerges from the interaction of **reward systems** (what's worth pursuing), control systems (how to pursue it), and interoceptive / cognitive (appraisal-based) **systems** (how we feel about it) - ☐ Think of the motivational brain as a **network of systems**, rather than a single system! ☐ Ok, but how do these systems interact to lead to goal-directed behavior? ## Mechanisms of motivation—cognition interaction ## Modes of communication between cognitive and motivation networks illustrated for attentional-motivational interactions. - (1) Interactions rely on **connector "hub" regions**, such as the anterior cingulate cortex, which are part of both attentional and motivational networks (indicated via the red outline in both the valuation-cortical and attentional networks). - **(2)** In addition, **specific regions may link the two networks**, either directly or via the thalamus. - **(3)** Finally, motivational signals are embedded within cognitive mechanisms via the action of **diffuse neuromodulatory systems**. ## The link between models of motivation, emotion, and cognition is important because it emphasizes the idea that cognition is not value neutral! Braver, T. S., Krug, M. K., Chiew, K. S., Kool, W., Westbrook, J. A., Clement, N. J., et al. (2014). Mechanisms of motivation-cognition interaction: challenges and opportunities. *Cognitive, Affective, & Behavioral Neuroscience, 14*(2), 443–472. http://doi.org/10.3758/s13415-014-0300-0 ## Dysregulated motivation: Habit formation in addiction #### **Experimental setup of animal models:** #### Operant chamber with an active lever and an inactive lever - Responding on the active lever results in drug infusion (drug taking), and a presented light stimulus becomes a drug conditioned stimulus through Pavlovian conditioning (left panel) - Compulsive drug taking is defined as persistent responding when the lever press is punished at the same time as drug infusion (right panel). - (a) Addictive drugs have a common initial effect of increasing levels of dopamine in the nucleus accumbens (NAc) particularly dopamine released by neurons projecting from the ventral tegmental area (VTA) → crucial for initial drug reinforcement - Drug taking depends on plasticity of projections from the medial prefrontal cortex (mPFC) and orbitofrontal cortex (OFC) to the dorsomedial striatum (DMS) - Initially, drug seeking is goal-directed and depends on the DMS and afferents from the mPFC and OFC. - (d) Compulsive drug seeking depends on the loss of prefrontal cortical 'top-down' control over the striatal mechanisms underlying drug-seeking habits (denoted by shading of the DLS and grey shading of the mPFC and OFC). # Impulsivity versus compulsivity in human stimulant addiction "[...] reduced diffusion metrics of a tract projecting from the right anterior insula to the NAcc were associated with subsequent relapse to stimulant use, but not with previous diagnosis. These findings highlight a structural target for predicting relapse to stimulant use and further suggest that distinct connections to the NAcc may confer risk for relapse versus diagnosis." ## Summary - Systems approaches to motivation view it as an emergent property of dynamic interactions between cognitive, emotional, social, and environmental factors. These models often require multi-level, interdisciplinary to fully capture the complexity of motivated behavior. - Cognitive and neural models: Cognitive models have focused on distinguishing phases such as deliberation and action phases; neural models of motivation overlap with neural models of cognition (e.g., attention) and emotional processing, involving aspects of information integration (prefrontal cortex) and valuation (cortical/subcortical). - **Comparative approaches:** Animal models have been (and still are) instrumental in helping understand hierarchy of needs and the neural basis of simple motivational processes, such as habit formation (e.g., drug addiction). ## Key (mandatory) reading Braver, T. S., Krug, M. K., Chiew, K. S., Kool, W., Westbrook, J. A., Clement, N. J., ... & Momcai Group. (2014). Mechanisms of motivation-cognition interaction: challenges and opportunities. Cognitive, Affective, & Behavioral Neuroscience, 14, 443-472. https://link.springer.com/content/pdf/10 .3758/s13415-014-0300-0.pdf Cogn Affect Behav Neurosci (2014) 14:443-472 DOI 10.3758/s13415-014-0300-0 #### **Mechanisms of motivation—cognition interaction:** challenges and opportunities Todd S. Braver · Marie K. Krug · Kimberly S. Chiew · Wouter Kool · J. Andrew Westbrook · Nathan J. Clement · R. Alison Adcock · Deanna M. Barch · Matthew M. Botvinick · Charles S. Carver · Roshan Cools · Ruud Custers · Anthony Dickinson · Carol S. Dweck · Ayelet Fishbach · Peter M. Gollwitzer Thomas M. Hess · Derek M. Isaacowitz · Mara Mather · Kou Murayama · Luiz Pessoa Gregory R. Samanez-Larkin · Leah H. Somerville · for the MOMCAI group Published online: 12 June 2014 © Psychonomic Society, Inc. 2014 Abstract Recent years have seen a rejuvenation of interest in the field, in terms of key research developments and candidate studies of motivation-cognition interactions arising from many different areas of psychology and neuroscience. The Neuroscience provides a sampling of some of the latest re- The MOMCAI group refers to the attendees of the Mechanisms of Motivation, Cognition, and Aging Interactions conference, held in Washington, D.C., on May 2-4, 2013, who were directly involved in specifying the content of this article from conference discussions. The attendees, beyond the listed authors, were Stan Floresco, Michael Frank, Ulrich Mayr, Erik Asp, Sarah Barber, Brittany Cassidy, Jong Moon Choi, Michael Cohen, Reka Daniel, Kathryn Dickerson, Natalie Ebner, Tammy English, Natasha Fourquet, Nichole Lighthall, Brenton McMenamin, Srikanth Padmala, Angela Radulescu, Kendra Seaman, Brian Smith, Mieke van Holstein, Steven Stanton, Isha Vicaria, Tara Queen, and Lisa T. S. Braver () · M. K. Krug · J. A. Westbrook · D. M. Barch Department of Psychology, Washington University in St. Louis, CB1125, One Brookings Drive, St. Louis, MO 63130, USA e-mail: tbraver@artsci.wustl.edu K. S. Chiew · N. J. Clement · R. A. Adcock Center for Cognitive Neuroscience, Duke University, Durham, NC, W. Kool · M. M. Botvinick Department of Psychology, Princeton University, Princeton, NJ, Department of Psychology, University of Miami, Miami, FL, USA Radboud University Nijmegen Medical Center, Nijmegen, The neural mechanisms receiving focused investigation as potential sources of motivation-cognition interaction. However, our present issue of Cognitive, Affective, & Behavioral primary goal is conceptual: to highlight the distinct perspectives taken by different research areas, in terms of how motisearch from a number of these different areas. In this introductory article, we provide an overview of the current state of that are emphasized, and the theoretical questions being Cognitive, Perceptual, and Brain Sciences, University College London, London, UK Experimental Psychology, University of Cambridge, Cambridge, UK Department of Psychology, Stanford University, Stanford, CA, USA Booth School of Business, University of Chicago, Chicago, IL, USA Department of Psychology, New York University, New York, NY,