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Learning Objectives

Be able to discuss different types of human knowledge and the
cognitive (memory) systems that implement it...

Discuss the adaptive significance of different types of knowledge
representations

Discuss advantages and limits of comparative approaches to
understand knowledge representation

Be aware of general developmental patterns in the acquisition of
knowledge

Be able to identify central features of cognitive and neural model(s)
of semantic cognition



Where did you park your bike/car?

What is the capital of France?
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Declarative, verbal knowledge (as measured by a
vocabulary test) is one of the best correlates of g...

Deary, . . (2001). Human intelligence differences: A recent history. Trends in Cognitive Sciences, 5(3), 127—130.



Different types of knowledge systems fulfil different goals

“The complementary learning systems framework is based on the logic of tradeoffs
between mutually incompatible computational goals. The central tradeoff behind our
framework involves two basic types of learning that an organism must engage in — learning
about specifics versus generalities — which require conflicting neural architectures”

Two incompatible goals | Remember specifics Extract generalities
Example: Where is car parked? Best parking strategy?
Need to: Avoid interference Accumulate experience
Solution: (1) | Separate representations | Overlapping representations

(keep days separate) (integrate over days)
69 Sateon)

(2) | Fast learning Slow learning
(encode immediately) (integrate over days)
(3) | Learn automatically Task driven learning
(encode everything) (extract relevant stuff)
System: Hippocampus Neocortex

O'Rellly, RC. & Norman, KA. (2002). Hippocampal and neocortical contributions to memory: Advances in the
complementary leaming systems framework. Trends in Cognitive Sciences, 6, 505-5 | 0. 6
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A classic: H.M.

H.M. had a history of epileptic seizures and underwent a surgical
intervention that involved resecting the medial aspect of the temporal
lobe bilaterally. The lesion was bilaterally symmetrical and included
large portions of the temporal cortex, including the hippocampus and
surrounding structures. The surgery successfully reduced the
frequency and severity of his seizures but left H.M. with memory |
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deficits, characterized by severe anterograde amnesia, making him KERERELEOM S
unable to form new declarative memories. Additionally, he X
exhibited retrograde amnesia with a temporal gradient, losing e &

memories of events from the years preceding the surgery while 9 =

retaining older, more consolidated memories. Despite these deficits, i,’,"/..,\' »

H.M. retained the ability to learn procedural skills, such as mirror- M‘ ‘

tracing tasks, demonstrating that non-declarative memory relies on wierocameus
brain regions outside the medial temporal lobe.

A few conclusions can be drawn from H.M.’s case (and similar ones):

1. Memory is a distinct cerebral ability that is separate from other cognitive functions, such as
perception, personality, or motivation.

2. Short-term memory and long-term memory are distinct functions: H.M. had severely impaired
long-term memory, however, he could maintain and use information for a short time in
immediate memory (working memory) so long as the material could be effectively rehearsed.
With distraction, the information was lost.

3. Medial temporal lobe structures are not the ultimate repository of long-term memory because
H.M.’s memory for remote events remained largely intact.

Scoville, W. B., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology
Neurosurgery & Psychiatry, 20, | |-21. https://doi.org/10.1 136/jnnp.20.1.1 |



https://doi.org/10.1136/jnnp.20.1.11

Opportunities and challenges of comparative approaches
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FIGURE 9.19 Delayed nonmatch-to-sample task.

(a) The correct response has a food reward located under it.

(b) The monkey is shown the correct response, which will yield a
reward for the monkey. (c¢) The door is closed, and the reward is

placed under a second response option. (d) The monkey is then

shown two options and must pick the correct response (the one

that does not match the original sample item) to get the reward.
Here the monkey is pictured making an error.

Table 1 Effects of removal of amygdala and hippocampus on memory

Preoperative Postoperative Delays ( %,correct) Objects (95 correct)
Groups Trials Errors Trials Errors 30s 60s 120 s 3 5 1
Normal control 1 100 26 0 0 97 98 96 96 93 91
2 80 28 0 0 99 100 98 97 97 94
3 40 19 0 0 98 99 98 97 96 92
Amygdalectomy 1 120 42 80 32 95 95 95 91 92 82
2 100 27 340 85 91 89 92 88 87 77
3 80 30 0 0 91 95 94 96 95 87
Hippocampectomy 1 60 17 80 22 98 93 94 95 92 84
2 100 26 120 32 85 89 83 89 85 71
3 120 31 20 4 98 99 95 95 92 88
Amygdalectomy - 1 210 49 760 179 79 65 65 62 64 59
hippocampectomy 2 100 26 1,500 429* 64 59 63 60 55 61
80 22 700 203 61 47 52 53 58 44
Group means
Normal control 73 24 0 0 98 99 98 97 96 92
Amygdalectomy 100 33 140 39 94 93 94 92 91 82
Hippocampectomy 93 25 73 19 94 94 91 93 90 81
Amygdalectomy + 130 32 987 270 68 51 60 58 59 55

hippocampectomy

Scores in preoperative and postoperative columns are the numbers of trials and errors preceding criterion of 90 correct choices of the novel
object in 100 trials (delay following familiarisation with the other object in the pairs was 10 s). Scores in delays columns are percentage correct
in 100 trials at each of three longer delays tested in succession at the rate of 20 trials per day, except for the longest delay (120 s) which was
tested for 10 trials per day. Scores in objects columns are percentage correct in 150 trials for each of three multiple-object conditions tested in
succession : in the first condition, three objects were presented for familiarisation, one at a time at 20 s intervals, and then re-presented in the
same order, each being paired with a novel object, again at 20 s intervals; in the next condition, five objects were presented one at a time at
20 s intervals, and so on. Thirty trials were presented daily, ten sets of 3's or six sets of 5’s or three sets of 10’s. The minimum delay between
familiarisation and choice was 60, 100, and 200 s for the three conditions, respectively. Scores for individual animals are shown in the upper
part of the table, group means in the lower part. Histological examination indicated that the lesions were as intended except in animals
*hippocampzctomy 2” and ‘amygdalectomy + hippocampectomy no. 2°, both of which sustained, in addition to the planned removals, bilaterally
asymmetrical damage to the ventral part of inferior temporal (‘visual’) cortex.

*Failed; final score, 85 correct in 100 trials.

Mishkin (1978) examined the effects of hippocampal (and amygdala) lesions on memory in monkeys. It found
that while hippocampal damage alone caused mild memory impairments, the combined removal of the
hippocampus and amygdala resulted in severe deficits in recognition and associative memory tasks. Later it
lbecame clear that it was not the amygdala lesion per se but the loss of surrounding tissue — parahippocampal
regions — that led to deficits. The findings highlight the role of the hippocampus and parahippocampal regions

as key parts of a memory network.

Mishkin, M. (1978). Memory in monkeys severely impaired by combined but not by separate removal of amygdala
and hippocampus. Nature, 273(5660), 297-298. https://doi.org/10.1038/273297a0 9
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Opportunities and challenges of comparative approaches

Table 2
Performance of Amnesic Patients and Monkeys With H* A* Lesions on the Same Tasks

Amnesic patients Monkeys with H*A* lesions
Test +/- Reference +/- Reference

Delayed nonmatching to sample + Squire, Zola-Morgan, & Chen, 1988; + Mishkin, 1978; Zola-Morgan
Oscar-Berman & Bonner, 1985 & Squire, 1985

Retention of object + Squire, Zola-Morgan, & Chen, 1988 + Zola-Morgan & Squire, 1985

discrimination

8-pair concurrent discrimination + Squire et al., 1988; Oscar-Berman & + Zola-Morgan & Squire, 1985
Bonner, 1985

Object reward association + Squire et al., 1988 + Phillips & Mishkin, 1984

24-hr concurrent discrimination + Squire et al., 1988 - Malamut, Saunders, &

Mishkin, 1984

Motor skill learning - Pursuit rotor task; Brooks & - Lifesaver task; Zola-Morgan
Baddeley, 1976 & Squire, 1984

Pattern discrimination + Predicted outcome; not yet tested - Zola-Morgan & Squire, 1984

Note. References are to representative studies and are not exhaustive. Plus sign indicates impairment; minus sign indicates no impairment.
Monkeys may approach the 24-hr concurrent-discrimination task and the pattern-discrimination task differently than humans approach these
two tasks. Humans try simply to memorize which stimulus is correct and which is incorrect (i.e., using declarative memory). Monkeys gradually
learn incrementally, perhaps by gradually strengthening associations or by “tuning in” relevant dimensions of the stimuli (for fuller discussion, see
Zola-Morgan & Squire, 1984). From “Neuropsychological Investigations of Memory and Amnesia: Findings From Humans and Nonhuman
Primates” (p. 446) by S. Zola-Morgan and L. R. Squire, 1990, in A. Diamond, The Development and Neural Bases of Higher Cognitive Functions,
New York: New York Academy of Sciences. Copyright 1990 by the New York Academy of Sciences. Adapted by permission.
The organization and function of the medial temporal lobe is highly conserved across species (rat, monkey,
human). However, because of the use of different strategies (e.g., monkeys learn visual discrimination
through habit learning rather than memorization), it took decades to uncover many of similarities in the role

of these structures for memory.

Squire, L. R (1992). Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans.
Psychological Review, 99, 2, 195-231. http://doi.org/10.1037/0033-295%.99.2.195

Clark, R. E, & Squire, L. R (2013). Similarity in form and function of the hippocampus in rodents, monkeys, and humans.
Proceedings of the National Academy of Sciences, | 10, 10365—10370. http://doi.org/10.107/3/pnas. 301225110 10
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An overview of (long-term) memory systems
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Figure 1| The declarative versus nondeclarative memory account.
In this model*, long-term memory is divided into two broad classes. One
class is characterized by the capacity for conscious recollection and is called
declarative memory. The other class encompasses diverse unconscious
learning and memory abilities and is referred to as nondeclarative memory.
Declarative memory consists of two subclasses: episodic memory, which
consists of memories for autobiographical events; and semantic memory,
which consists of facts and general knowledge****'*’, Semantic memories
are impersonal and devoid of autobiographical context, whereas episodic

memories are personal. These include where and when episodes happened
and are accompanied by a feeling of retrieving personally experienced epi-
sodes (autonoetic consciousness*****#3). In this model both episodic and
semantic memories are dependent on the medial temporal lobe and dien-
cephalon. Nondeclarative memory in this model includes procedural learn-
ing of sensorimotor and cognitive skills and habits, priming, simple
conditioning, and habituation and sensitization (BOX 1), all of which are
expressed in behavioural changes and are independent of the medial
temporal lobe.

This model is not without limitations and has lbeen criticized for equating memory systems
with conscious experience - see alternative on the next slide...

Henke, K. (2010). A model for memory systems based on processing modes rather than consciousness.
Nature Reviews Neuroscience, | |(7), 523-532. https://doi.org/10.1038/nm2850
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An overview of (long-term) memory systems

Some studies show the
hippocampus enables rapid
associative learning even without
CONSCIOUS awareness, as
demonstrated by subliminal encoding
tasks where hippocampal activity
predicted later retrieval success.
Also, patients with hippocampal
damage show deficits in flexible
Mmemory expression but retain
associative learning over multiple
trials, supported by extra-
hippocampal regions. These findings
reveal hippocampal involvement in
both conscious and unconscious
memory, challenging traditional
consciousness-based models.

Rapid encoding of Slow encoding of Rapid encoding of
flexible associations rigid associations single or unitized items

- .

- s
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Figure 3 | A processing-based division among memory systems. The model distinguishes three
basic processing modes that differ with respect to three variables: rapid versus slow encoding; associa-
tive versus single item encoding; and flexible and compositional versus rigid and unitized representa-
tion. The three processing modes select for specialized brain systems, which in turn generate
qualitatively distinct memories that can be classified in traditional terms. Consciousness of encoding
and retrieval does not select for memory systems and hence does not feature in this model. Episodic
memory refers to rapidly encoded and flexibly represented associations of any kind and relies on the
hippocampus and neocortex. The slow encoding of rigid associations engages the basal ganglia,
cerebellum and neocortex for classical conditioning or for the creation of new procedural or semantic
memories. The rapid encoding of single or unitized items involves the parahippocampal gyrus and
neocortex to afford priming and familiarity.

Henke, K. (2010). A model for memory systems based on processing modes rather than consciousness.
Nature Reviews Neuroscience, | 1(7), 523-532. https://doi.org/10.1038/nrn2850 12
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Acquiring Semantic Representations

“it 1s well-established that early categorization abilities become
refined over the developmental trajectory. Researchers have
identified a global-to-basic shift in early categorical thinking, such
that preverbal infants discriminate between global-level categories
(i.e., dogs, cats, chairs, tables, etc.) before basic-level categories (i.e,
different breeds of cats and dogs). (...) There is evidence to
suggest that infants also use dynamic, causal, and functional
information to guide their object categorization and discrimination.”

Poulin-Dubois, D. & Pauen, S. (2017). The development of object categories: What, when, and how? In. H. Cohen
& C. Lefebvre (Eds.), Handbook of Categorization in Cognitive Science (2nd Ed., pp. 653—708). Elsevier.
doi:10.1016/6978-0-08-101107-2.00027-0

14



Acquiring Semantic Representations

Distributed Networks
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The network is used to simulate learmning
propositions about concepts. The entire
set of units used in the network is
shown. Inputs are presented on the left,
and activation propagates from left to
right. Where connections are indicated,
every unit in the pool on the left
(sending) side projects to every unit on
the night (receiving) side. An input
consists of a concept—relation pair; the
input ‘canary CAN' Iis represented by
darkening the active input units. The
network is trained to tum on all those
output units that represent correct
completions of the input pattern. In this
case, the correct units to activate are
‘srow/, ‘move’, fly’ and ‘sing’.

Connectionist models aim to provide an explanation for how concepts
and categories are acquired in a graded fashion from experience.

McClelland, J. L. & Rogers, T. T. (2003). The parallel distributed processing approach to semantic

cognition. Nature Reviews Neuroscience, 4, 310-322.

Connectionist model

A form of computational
model used to understand
cognitive processes by
simulating the flow of
activation among simple,
neuron-like processing units
through weighted, synapse-
like connections.

Backward Progagation

Backpropagation is a method
used in artificial neural
networks to calculate a
gradient that is needed in the
calculation of the weights to
be used in the network.
Backpropagation is shorthand
for "the backward
propagation of errors," since
an error is computed at the
output and distributed
backwards throughout the
network’s layers. It is
commonly used to train
deep neural networks.
https://en.wikipedia.org/wiki/
Backpropagation

15
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Acquiring Semantic Representations
Distributed Networks

a Epoch 250 Epoch 750 Epoch 2,500 b

Pine ol “]DDDDDD:L MHD__DD:Q
Ok | onlllene [laifen. WL
o | tnllon |l | Tl
ey ‘nﬂﬂﬂl_lnl_l.—‘ LT‘II‘IHH =) ‘ o HH n
oo ] |l | L. ol
Canary kkﬂ]ﬂ[[ﬂll h}Jﬂ[[kiﬂl Lﬂﬂj][k{ﬂl
5" onnnnll] [Mne 00 (M0 000
Smmonﬁkﬂ]ﬂﬂﬂll [[kai]]l [[Lixiljl

Euclidean distance

Plants vs. Animals
— Birds vs. Fish
Trees vs. Flowers
Robin vs. Canary
= Pine vs. Oak

254

2.0+

Activation

Epoch 500

m

C

(o34
?

SO
I

Epoch 1,500 Epoch 2,500

ol

jo} QX C £ C [0 QX C L C
32EI5525 QZEI5886
u:Dﬂ-OOgCE IDG.OOECE
o 3 o 3
OB & o3&

Canary-CAN-Grow
Canary-CAN-Move

== Canary-CAN-Fly
Canary-CAN-Sing
= Pine-HAS-Leaves

T T T T
0 500 1,000 1,500 2,000 2,500
Learning epochs

T
500

T T T
1,000 1,500 2,000 2,500
Learning epochs

a | Patterns of activation in the feedforward network
representing the eight objects (e.g., pine, oak, salmon) at three
points in the learning process (epochs 250, 750, 2,500).

b | A hierarchical clustering analysis was used to visualize the
similarity structure in the patterns of activation. Early in learning,
the patterns are relatively undifferentiated; the first difference to
appear is between plants and animals. Later, the individual
concepts are differentiated, but a hierarchical organization
remains showing a clear differentiation at both the superordinate
(plant—animal) and intermediate (bird—fish/tree—flower) levels.

c | Pairwise distances between representations of groups of
concepts or individual concepts, illustrating the continuous but
stage-like character of progressive differentiation.

d | The network’s performance in activating various properties of
some objects indicating that correct performance is acquired in a
general-to-specific manner, and tracks the differentiation of
concepts shown in c. Note the activation of ‘leaves’ when the
network is probed with ‘pine-HAS'. This shows an inverted ‘U'-
shaped developmental course, capturing the ‘illusory correlations’
or incorrect attributions of typical properties.

The toy example suggests that learning of concepts can be acquired over time through
learning of features. Crucially, it leads to interesting developmental patterns (global-to-basic)
and errors (over-generalization). One should, however, note that learning by supervised
learning with explicit, external feedback as in this example is not very plausible...

McClelland, J. L. & Rogers, T. T. (2003). The parallel distributed processing approach to semantic

cognition. Nature Reviews Neuroscience, 4, 310-322.
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Acquiring Semantic Representations

Modern language models (including large language models, LLMs) use self-supervised
learning to predict the next token In a sentence, given the surrounding context.

"(...) it has been shown that we can
gauge city sizes by analyzing their
respective word frequencies in corpora.
(...) the convergence between language
and physical properties of the stimuli
clearly breaks down for the human body
(I.e., more relevant and functional body
parts are not necessarily larger in size).
(...) This demonstrates that the surface-
level statistical structure of language opens
a window into how humans represent the
world they live in, rather than into the

wiorld itself.”

Figure 4. Left Actual human body proportions. Middle Sensory representational size proportions (i.e., the
sensory homunculus (1)). Right Word frequency proportions. These figures were created by computing the
relative (distorted) surface area of each body part for stimulations (Homunculus) and word frequencies
(Language-based body), and mapping them on the “Genesis 2 Male” model in Daz 3D (https://www.daz3d.
com/). Yet, because the morphing software used is based on volume rather than on surface area, we further
adjusted our computation to the different ratios of surface area to the volume of distinct body parts*.

Human Body Homunculus Language-based Body

Glnther, F., & Rinaldi, L. (2022). Language statistics as a window into mental representations.

Scientific Reports, 12(1), 8043. https://doi.org/10.1038/s41598-022-12027-5 1
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Cognitive Models of Semantic Representations
(a)

Different proposals for network models of semantic representations:

(@) tree-structured hierarchy: Collins and Quillian (1969) proposed that
people have and search efficiently inheritance hierarchies to retrieve or verify
facts such as “Robins have wings” and showed that reaction times of human
subjects matched qualitative predictions of this model (bird vs. robin).

(b) arbitrary, unstructured graph: whereas Collins & Loftus (197/5) propose
connections are based on personal experience (not logic), and this could
better account for effects of specific items (robin vs. ostrich). Associations as
underlying mechanism of spreading activation and priming

(c), a scale-free, small-world graph: semantic networks estimated from large
linguistic corpi have a small-world structure (most nodes are not neighbours of
one another, but can be reached from every other by a small number of
steps) and such patterns are compatible with a process of preferential
attachment (more highly connected nodes are more likely to acquire new
connections; Steyvers & Tenenbaum, 2005)

Steyvers, M., & Tenenbaum, ].B. (2005). Graph theoretic analyses of semantic networks: Small
worlds in semantic networks. Cognitive Science, 29, 41-78

Spreading Activation

A method for searching
associative networks, neural
networks, or semantic networks.
The search process is initiated by
labeling a set of source nodes
(e.g. concepts in a semantic
network) with weights or
"activation" and then iteratively
propagating or "spreading” that
activation out to other nodes
linked to the source nodes. Most
often these "weights" are values
that decay as activation
propagates through the network.

Semantic Priming

Priming is an implicit memory
effect in which exposure to one
stimulus influences a response to
another stimulus. The seminal
experiments of Meyer and
Schvaneveldt in the early 1970's.
Their original work showed that
people were faster in deciding
that a string of letters is a word
when the word followed an
associatively or semantically
related word. For example,
NURSE is recognized more
quickly following DOCTOR than
following BREAD. 19



The Neural Basis of Semantic Representations

Category-specific deficits (double dissociations from lesion studies)

Caramazza and colleagues have suggested
that evolutionary pressures resulted in
specialised (and functionally dissociable)
neural circuits dedicated to processing,
perceptually and conceptually, different
categories of objects (i.e., Domain-Specific
hypothesis). The hypothesis suggests specific
' ' . S e R categories for which rapid and efficient
S il TIPS (Eawe. S C'""""_gmwm"’f"""'f identification could have had survival and
reproductive advantages: including ‘animals’,
fruit/vegetables’, ‘conspecifics’, and possibly
tools’.

100
80 4
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Lesion studies suggest that there are category-specific semantic deficits. More
recent models (discussed in the next slides) do not dispute the categorical deficits
but suggest these may be related to functional/modality characteristics associated
with the categories (e.g., tools -> function and use; animals -> sensory
characteristics) rather than category dedicated neural areas.

Hillis, A. E., & Caramazza, A. (1991). Category-specific naming and comprehension impairment: A double dissociation.
Brain, 1'14(5), 2081-2094. http://doi.org/10.1093/brain/1 [4.5.208 |

20
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The Neural Basis of Semantic Representations

Category-specific neural activation (neuroimaging)
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form of words and their meanings are provided by the { \
coupling between these word-related circuits and 1\;/\}“ ;. - y - }
semantic  action—perception circuits  (illustrated by L - L.

Face-related word Arm-related word Leg-related word

different colours in the other brain diagrams). The
higher-order assemblies (including both word form-
and meaning-related circuits) are specific to the
semantic category and store information about the
actions and objects that the words are typically used
to describe; b) Results of event-related functional MRl
studies that support this model of semantic circuits.

Neuroimaging studies also suggest category-specific neural activation and bolster
the idea of a mapping between types of representations and specific neural circuits.

Pulvermdiller, F., & Fadiga, L. (2010). Active perception: Sensorimotor circuits as a cortical basis for
language. Nature Reviews Neuroscience, | 1(5), 351-360. http://doi.org/10.1038/nm?281 |
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The Neural Basis of Semantic Representations

General (amodal) deficits associated with Semantic Dementia (SD)

Semantic dementia Alzheimer’s disease

A

Semantic Dementia

A degenerative neuropathological condition that
results in the progressive loss of semantic
knowledge as revealed through naming, description
and non-verbal tests of semantic knowledge,
resulting from disease of the anterior and lateral
aspects of the temporal lobes.

The are significant differences between semantic dementia and Alzheimer's disease in measures of brain
function and semantic memory. The brain areas of reduced metabolism (shown as graded grey areas in the
figure above), are widespread in patients with Alzheimer’s disease (AD) and include some regions that are
implicated in the cortical semantic network. In the AD cases shown, however, there was little evidence of any
abnormality in anterior temporal regions, which show substantial and focal hypometabolism in patients with

semantic dementia (SD).

The performance of Semantic Dementia patients is significantly more impaired than AD patients on many
semantic tasks (e.g., naming, verbal fluency) despite having more localised lesions.

Semantic dementia suggests that there are general (amodal) semantic deficits

associated with anterior temporal function.

Patterson, K., Nestor, P. & Rogers, T. T. (2007). Where do you know what you know! The representation of semantic

knowledge in the human brain. Nature Reviews Neuroscience, 8, 9/6-988.
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The Neural Basis of Semantic Representations: Hub-and-spokes model

a Computational framework
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a | Modality-specific sources of information (spokes) are
coded across a set of processing units within separate
processing layers in the model. Each ‘spoke’ layer is
reciprocally connected to a single transmodal ‘hub’. The
model is trained to take each of the spokes, in turn, as
input and, through the hub, to reproduce the correct
information across the other spokes. For example, the
model is provided with the visual form of each item as
input and is trained to reproduce the sounds, names,
valence and other types of information that are associated
with each item. The emergent result of this training is that
the model forms generalizable semantic representations.
The progressive, multimodal semantic impairment of
patients with semantic dementia can be mimicked by
gradually removing the hub connections.

b | A neuroanatomical sketch of the location of the hub
and spokes is presented. The hub is located within the
anterior temporal lobe (ATL) region, whereas the
modality-specific spokes are distributed across different
neocortical regions (the same colour coding is used as
for the computational model). Each spoke communicates
bidirectionally with the ATL hub through short- and long-
range white-matter connections (arrows).

Lambon-Ralph, M. A. L, Jefferies, E., Patterson, K, & Rogers, T. T. (2017). The neural and computational bases of semantic
cognition. Nature Reviews Neuroscience, 18(1), 42-55. http://doi.org/10.1038/nm.2016.150 23
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Summary

- Adaptive Significance: Knowledge (e.g., facts, causal relations) is a hallmark of intellectual
performance; the cognitive system is structured such that it allows the pursuit of different
(potentially incompatible) goals, suggesting the representation of abstract knowledge may be
dissociable from other types of knowledge (procedural, episodic).

- Comparative approaches: Comparative approaches are limited in providing a picture of
language-dependent, abstract knowledge; nevertheless, animal models helped understand the
role of hippocampal function (central for declarative knowledge) as well as other structures (e.g.,
central for procedural knowledge); overall, the evidence suggests that different systems support
different types of knowledge.

- Development: Evidence for developmental patterns of general-to-specific learning of concepts;
current work focuses on answering how computational/learning processes can create complex
cognitive representations while accounting for such developmental patterns.

- Cognitive and neural models: some disconnect between cognitive and neural models; there is
a predominance of network models of semantic knowledge that are largely amodal but are useful
to account for spreading activation and priming results from behavioural studies; current neural
models, such as the hub-and-spokes model, propose both modality-specific representations
(neocortex) and amodal representations (anterior temporal lobe), as well as important role for
frontal cortex in cognitive control of knowledge elicitation.
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