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Goals for today

Discuss the relation between actuarial judgment and
definitions of artificial intelligence, machine learning, and deep
learning

Discuss problems of overfitting when using actuarial
approaches and possible solutions

Discuss the problem of bias in actuarial approaches and
possible solutions

Discuss issues concerning the adoption of actuarial judgment
In practice



Artificial Intelligence

ACtuarIaI Judgment br'anch o.f.c.omputer science dedicated to
v . creating artificial systems that can perform tasks
refers to deCISIOﬂ-maklﬂg that typically require human intelligence

processes that rely on statistical
models, algorithms, or actuarial
tables. These tools are used to Machine learnin
predict outcomes based on : g
o branch of computer science dedicated

quantitative data from past to building systems that learn from
cases. Actuarial judgment data
emphasizes objectivity and
consistency, using empirical
data and predefined rules to Deep Iearning
make predictions or decisions, subset of machine learning
without the influence of the using neural networks trained

. , on large amounts of data
decision maker’s momentary
state.



Different types of machine learning...

Meaningful Structure Image

“Machine learning is a
discipline focused on two W . WE——"
interrelated questions: How Ty "
can one construct
Computer SyStemS that e Unsupervised Supervised
. . Learning Learning Weather‘
automatically improve
through experience? and Machine Ygem
What are the fundamental
statistical-computational-
information-theoretic laws
that govern all learning
systems, including Reinforcement
Learning
computers, humans, and

organizations?”
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Jordan, M. |., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects.
Science, 349(6245), 255-260. http://doi.org/10.1126/science.aaa8415
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Bias-variance dilemma

Low bias High bias

A dilemma exists because bias and
variance are not independent: Methods for
reducing variance tend to increase bias,
and methods for reducing bias tend to
increase variance (Brighton & Gigerenzer,
2015)

High variance

Low variance

Figure 2. An estimator's predictions can deviate from the desired outcome (or true scores) in two
ways. First, the predictions may display a systematic tendency (or bias) to deviate from the
central tendency of the true scores (compare right panels with left panels). Second, the
predictions may show a high degree of variance, or imprecision (compare bottom panels with
top panels).

Yarkoni, T. & Westafall, J. (2017). Choosing prediction over explanation in psychology: Lessons from
machine learning. Perspectives on Psychological Science.

., & Gigerenzer, G. (2015). The bias bias. Journal of Business Research, 68(8), 1772-1784.
10.1016/j.jbusres.2015.01.061

Brighton, H
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Limrtations of actuarial judgment: Overfitting
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Fig. 3. Plot (A) shows London’s mean daily temperature in 2000, along with two polynomial models fitted with
using the least squares method. The first is a degree-3 polynomial, and the second is a degree-12 polynomial.
Plot (B) shows the mean error in fitting samples of 30 observations and the mean prediction error of the same
models, both as a function of degree of polynomial.

Gigerenzer, G, & Brighton, H. (2009). Homo Heuristicus: Why biased minds make better inferences.
Topics in Cognitive Science, 1(1), |0/—143. doi:10.1 | 11/.1756-8765.2008.01006.x



How can one avoid overfitting”?

Regularization: Use regularisation in the estimation of model
parameters (e.qg. ridge or lasso regression)

n p
Regularized loss = z:(yz - g}i)z + A Z f(ﬂj))
i J

lasso regression: |B| (Bs are reduced in size, resulting in automatic feature
selection, with some 3s becoming zero)

ridge regression: 32 (squaring reduces the size of extreme [3s).
elastic net: |B| + B° (the best of both worlds)

Yarkoni, T. & Westfall, J. (2017). Choosing prediction over explanation in psychology: Lessons from
machine learning. Perspectives on Psychological Science, 12(6), 1100-1122.



How can one avoid overfitting”?

Cross-validation: Compare models in how well they predict
out-of-sample (cross-validation/prediction)

Training Test (holdout)

Yarkoni, T. & Westfall, J. (2017). Choosing prediction over explanation in psychology: Lessons from
machine learning. Perspectives on Psychological Science, 12(6), 1100-1122.



How can one avoid overfitting”?

- Averaging: Use modeling approaches that integrate averaging
(e.g., random forest) or use different models and combine their
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For example, one may have three predictive models, one based on a random forest, leading to
predictions Y'*F; one based on a neural net, with predictions ¥;"N; and one based on a linear model
estimated by LASSO, leading to ¥;'4559. Then, using a test sample, one can choose weights p*,
p™, and p**° by minimizing the sum of squared residuals in the test sample:

Ntest

2
arf A ~lass . § : fY RF NN lasso 77 LASSO \~
(pr ,pnn,p'ls's()) — arg ‘ min - (K _ pr YI _ pﬂnYi _ pﬂSS()Yi ) ;

prt ,phn ’plnsso =

1=

subject to p™ 4+ p™ 4+ p™° =1 and pT,p™", p**° > 0.

Athey, S., & Imbens, G. W. (2019). Machine Learning Methods That Economists Should Know About.
Annual Review of Economics, 11(1), 685-725. https://doi.org/10.1146/annurev-economics-080217-053433
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Complex algorithms may lead to only small increases in performance!

Table 1
Performance of Different Algorithms in Predicting House Values

Prediction performance (RZ) Relative improvement over ordinary least
Training Fialil o squares by quintile of house value
Method sample sample 1st 2nd 3rd 4th 5th
Ordinary least 47.3% 41.7% - - - - -
squares [39.7%, 43.7%)

Regression tree 39.6% 34.5% -11.5% 10.8% 6.4% -14.6% -31.8%
tuned by depth [32.6%, 36.5%]

LASSO 46.0% 43.3% 1.3% 119% 131% 10.1% -1.9%

[41.5%, 45.2%)]

Random forest 85.1% 45.5% 35% 23.6% 27.0% 17.8% —-05%
[43.6%, 47.5%)]

Ensemble 80.4% 45.9% 45% 16.0% 179% 142% 17.6%
[44.0%, 47.9%]

Note: The dependent variable is the log-dollar house value of owner-occupied units in the 2011
American Housing Survey from 150 covariates including unit characteristics and quality measures.
All algorithms are fitted on the same, randomly drawn training sample of 10,000 units and
evaluated on the 41,808 remaining held-out units. The numbers in brackets in the hold-out sample
column are 95 percent bootstrap confidence intervals for hold-out prediction performance, and
represent measurement variation for a fixed prediction function. For this illustration, we do not
use sampling weights. Details are provided in the online Appendix at http://e-jep.org.

Mullainathan, S., & Spiess, J. (2017). Machine Learning: An applied econometric approach.
Journal of Economic Perspectives, 31(2), 87-106. http://doi.org/10.1257/jep.31.2.87
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Complex algorithms do not guarantee predictability!

“How predictable are life trajectories? We investigated this question with a scientific mass
collaboration using the common task method; 160 teams built predictive models for six life
outcomes using data from the Fragile Families and Child Wellbeing Study, a high-quality birth
cohort study. Despite using a rich dataset and applying machine-learning methods optimized
for prediction, the best predictions were not very accurate and were only slightly better than
those from a simple benchmark model. Within each outcome, prediction error was strongly
associated with the family being predicted and weakly associated with the technique used to
generate the prediction. Overall, these results suggest practical limits to the predictability of
life outcomes in some settings and illustrate the value of mass collaborations in the social
sciences.”

Best submission for each oulcome
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Fig. 2. Datasets in the Fragile Families Challenge. During the Fragile Fam- I
ilies Challenge, participants used the background data (measured from S I
child's birth to age 9 y) and the training data (measured at child age 15y) _‘:_ 0.06
to predict the holdout data as accurately as possible. While the Fragile [——
Families Challenge was underway, participants could assess the accuracy
of their predictions in the leaderboard data. At the end of the Frag-
ile Families Challenge, we assessed the accuracy of the predictions in the Material - Gt Eddion e el
holdout data. nancship raning

me al d age 15

Salganik, M. J., et al. 2020. (2020). Measuring the predictability of life outcomes W|th a scientific
mass collaboration. PNAS, http://doi.org/10.7910/DVN/CXSECU 12
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Watch on  IE8 YouTube

O’Neil
“.. algorithms are opinions embedded in code

”'



Limrtations of actuarial judgment: Bias

Training Data
ML Modeling
Selection of best ML model. Tuning model.
Inputs ML Model = Finalizing trained ML model.
Training data has known
¢ Unstructured and/or organic data e Modeling nonlinearity and interactivity inputs and outputs (ground truth).
e D>>nN
Evaluation Data
Evaluating ML Model
—— . Trained ML Predicted — Assessing predigtive accuracy of tr'ained
group: P ML Model Outputs P ML Model using data not used in
training. Data has known inputs
and outputs (ground truth).
Predictive accuracy
of ML Model
Trained ML Predicted \
Subgroup 1 Inputs - Outputs . . .
ML Mode Outputs Machine Learning Measurement Bias
; Differential functioning of the trained
Predictive accuracy ML model between subgroups.
of ML Model for Subgroup 1
= T In this illustration, it is empirically
Subgroup 2 Inputs “m'ag Py Ourte ultcste Outputs evaluated from whether there are
P differential predictive accuracies
- TRV between subgroups.
Predictive accuracy
Unseen / Additional / Future Data of ML Model for Subgroup 2 J
e Trained N VL Predicted Application of ML Model
ML Model Outputs Automatic prediction of outputs
using inputs.

e Automatic prediction

Fig. 1. Simplified process of machine-learning modeling.

Tay, L., Woo, S. E., Hickman, L., Booth, B. M., & D'Mello, S. (2022). A Conceptual Framework for Investigating and
Mitigating Machine-Learning Measurement Bias (MLMB) in Psychological Assessment. Advances in Methods and
Practices in Psychological Science, 5(1),1-30.



Table 2. Comparison Between Traditional Measurement Bias and Machine-Learning Measurement Bias

Key issues

Measurement bias

Machine-learning measurement bias

Types of scores
that are
relevant

Defining bias

Empirical
manifestation
of bias

Predicted observed scores typically derived
from CFA or IRT models of psychological
assessments

Latent scores typically derived from CFA or
IRT models of psychological assessments

Defined as a differential relationship
between the latent score and the
predicted observed score or differential
functioning of the measurement tool
across subgroups

One empirical manifestation is that the
measurement model produces different
scores for individuals belonging to
different subgroups despite the same
latent-score level.

Another empirical manifestation is that the
same measurement model does not fit
subgroups equally well.

Most typically assessed via differences in
model-data fit: (a) differences in CFA fit
between subgroups and (b) item-level
subgroup differences in IRT fit

Can also be assessed based on different
model-predicted scores for the same
latent-trait level

ML-model-predicted scores that are predictions produced by
the ML model

Ground-truth scores typically in the form of observed scores
from psychological assessments

Defined as differential functioning of the trained ML model
between subgroups

One empirical manifestation is when a trained ML model
produces different predicted score levels for individuals
belonging to different subgroups despite them having the
same ground-truth level for the underlying construct of
interest.

Another empirical manifestation is that the ML model yields
differential predictive accuracies across the subgroups.

Ground-truth score level: different ML-predicted score levels
between subgroups when subgroups have the same
ground-truth score level

Ground-truth distribution level: different ML-predicted score
distributions (e.g., means, variances) between subgroups
for equivalent subgroup ground-truth distributions or
the discrepancy between ML-predicted subgroup score
distributions and ground-truth subgroup score distributions

Predictive accuracy: different ML-model prediction accuracies
(i.e., nonequivalent convergence of predicted scores and
ground-truth scores) between subgroups

Modeling ground-truth score and ML-predicted scores:
applying (regression) models between ground-truth scores
and ML-predicted scores and finding that significantly
different models are needed between subgroups

Note: CFA = confirmatory factor analysis; IRT = item response theory; ML = machine learning.

Tay, L., Woo, S. E., Hickman, L., Booth, B. M., & D'Mello, S. (2022). A Conceptual Framework for Investigating and
Mitigating Machine-Learning Measurement Bias (MLMB) in Psychological Assessment. Advances in Methods and
Practices in Psychological Science, 5(1),1-30.



Data Bias Source 4: To what extent are computed
features equivalent between subgroups?

Algorithm Training Bias Source 1: To what extent is
Features  the trained algorithm using features equivalently
Computed  petween subgroups?
Behavioral Cues

Expressed in
Platform

Algorithm Training Bias Source 2: To what extent is the
trained algorithm weighting features equivalently
for prediction between subgroups?

Data Bias Source 3: To what extent are behaviors
expressed equivalent between subroups?

Data Bias Source 2: To what€xtent is \

platform-based personalit i~
equivalent between [ : N
subgroups? " Personality’  Platform- .
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Data Bias Source 1: To what extent is ground truth t
equivalent between subgroups? Machine Learning Measurement Bias:

Differential functioning of the trained ML model between
subgroups. MLMB can empirically manifest when a trained
ML model produces different predicted score levels for
individuals belonging to different subgroups despite them
having the same ground truth level for the underlying
construct of interest, and/or when the model yields
differential predictive accuracies across the subgroups.

Fig. 4. Expanding the Brunswik lens model to identify the sources of machine-learning measurement bias: an illustration using personality as the focal construct. Areas
highlighted in blue represent possible sources of machine-learning measurement bias; “platform-based personality”: the personality construct measured by input data (e.g.,
online personality assessed by social media data) used in machine-learning models to predict self-report personality.

Tay, L., Woo, S. E., Hickman, L., Booth, B. M., & D'Mello, S. (2022). A Conceptual Framework for Investigating and
Mitigating Machine-Learning Measurement Bias (MLMB) in Psychological Assessment. Advances in Methods and
Practices in Psychological Science, 5 (1),1-30.



Adoption of actuarial methods

Unstructured Unstructured
Interview Interview
Specific Specific

AptitudeTest AptitudeTest

Personality Personality

Test Test
GMA Test GMA Test
1 2 3 4 5 0 0.10.20.3040.50.60.70.80.9 1
Perceived Effectiveness Actual Effectiveness (Sales)

Figure 1. Perceived versus actual usefulness of various predictors.

Note. Perceived effectiveness numbers are on a 1-5 scale (1 = not good; 3 = average; 5 =
extremely good). Actual effectiveness numbers are correlations corrected for unreliability in
the criterion and range restriction. Because Vinchur, Schippmann, Switzer, and Roth (1998)
did not include interviews, the interview estimate is from Huffcutt and Arthur (1994) level
1 interview. GMA = general mental ability; personality = potency; specific aptitude =
sales ability.

Highhouse, S. (2008). Stubborn reliance on intuition and subjectivity in employee selection. Industrial and
Organizational Psychology, |(3), 333-342. https://doi.org/10.1 | | 1/].1754-9434.2008.00058 x



Adoption of actuarial methods: Algorithm aversion

Dietvorst et al. conducted
experiments where participants
were shown the performance of
both algorithms and humans on
prediction tasks. The participants
were then asked to choose
whether they would rely on the
algorithm or a human for future
predictions, sometimes after
seeing one or both make errors.
The results showed the tendency
of people to avoid using
algorithms after they have seen
them make mistakes, even if the
algorithms have a better overall
performance than humans

% Choosing Statistical Model
100%

90% - 82%

80% - --<--Did Not See Model Perform  71% __.-=222 82%

70% - —e—Saw Model Perform
60%

-
-
-
-
-
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40% -
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50% T‘

30%
20% -

10% -
13% 10%
0% -+
much more confidentin more confident in human
human (n=61) (n=409)

more confident in model much more confident in
(n=755) model (n=339)

equally confident in
model and human
(n=792)

Difference in Confidence in Model's vs. Human's Forecasts

Figure 4. Most people do not choose the statistical model unless they are more confident in the model’s
forecasts than in the human’s forecasts. Errors bars indicate *1 standard error. The “Did Not See Model
Perform” line represents results from participants in the control and human conditions. The “Saw Model
Perform™ line represents results from participants in the model and model-and-human conditions. Differ-
ences in confidence between the model’s and human'’s forecasts were computed by subtracting participants’
ratings of confidence in the human forecasts from their ratings of confidence in the model’s forecasts (i.e.,
by subtracting one 5-point scale from the other). From left to right, the five x-axis categories reflect
difference scores of: <-1, —1, 0, +1, and >>1. The figure includes results from all five studies.

Dietvorst, B. |, Simmons, |. P., & Massey, C. (2015). Algorithm aversion: People erroneously avoid algorithms after
seeing them err. Journal of Experimental Psychology: General, 144(1), | 14—126. http://dol.org/10.103//xge0000033

18
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Adoption of actuarial methods: Algorithm aversion

False expectations -> decision makers may have incorrect/unrealistic
beliefs about the performance of algorithms

Lack of decision control -> decision makers may strive for autonomy

Lack of incentivization -> incentives for algorithmic use may be unclear
or misaligned (effort vs. performance)

Combatting intuition -> decision makers may have incorrect
(overconfident) beliefs about own intuition

Conflicting concepts of rationality -> lack of a match between algorithm’s
knowledge and those of the individual (risk vs. uncertainty)

Burton, J. W.,, Stein, M. K,, & Jensen, T. B. (2019). A systematic review of algorithm aversion in augmented decision
making. Journal of Behavioral Decision Making, 27(1 1), 1309-20. http://doi.org/10.1002/bdm.2 55
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Adoption of actuarial methods

Trust
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TABLE 2: Human-Related Antecedents of Trust in Al

TABLE 3: Al-Related Antecedents of Trust

95% Confidence Interval

Antecedent of Trust K Effect Size D 52g s?, Upper Lower
Global 23 0.26* 0.34 0.09 0.14 0.38
Ability-based 8 0.32* 0.60 0.02 0.21 0.42
Competency/Understanding 2 1.02* 0.05 0.18 0.43 1.61
Expectancy 8 0.29 0.63 0.33 -11 0.69
Expertise 4 0.47* 0.14 0.20 0.03 0.91
Operator performance 2 0.76 0.02 1.46 -.92 243
Prior experience 4 -.19 0.69 0.06 -.43 0.05
Workload 2 -1.19 0.23 1.38 -2.82 0.44
Characteristic-based 20 0.38* 0.18 0.1 0.24 0.53
Age 2 0.09 0.02 0.02 -.08 0.26
Attitudes toward Al 5 1.05 0.30 3.61 -.61 2.72
Comfort with Al 1 -.37 -- -- --- ---
Culture 2 0.51* 0.04 0.07 0.15 0.87
Education 1 0.17 - - - -
Gender 3 0.42* 0.05 0.05 0.17 0.67
Personality traits 4 0.25* 0.47 0.02 0.12 0.37
Propensity to trust 1 0.70 - - - -
Satisfaction 1 1.04 - - - -

2

Note. *Denotes significance at the p < .05 level. ** s°, = sampling error variance; 52g = observed variance.

95% Confidence Interval

Antecedent of Trust K Effect Size D Szg Sze Upper Lower
Global 48 0.62* 1.10 0.09 0.54 0.70
Performance-based 22 1.47* 134 017 1.30 1.64
Dependability 2 0.80 0.15 2.02 -1.18 2.77
Performance 13 1.48* 1.41 0.16 1.26 1.70
Predictability 2 1.42 0.67 1.85 -.46 3.31
Reliability 5 2.70* 0.33 037 216 3.23
Attribute-based 35 0.31* 0.55 0.07 0.22 0.39
Al Personality 4 0.63* 239 0.04 0.42 0.83
Anthropomorphism 10 0.30* 029 0.2 0.08 0.52
Appearance 1 -.05 - -
Behavior 6 0.81* 0.38 0.09 0.57 1.04
Communication 9 0.06 0.15 0.05 -.08 0.20
Level of automation 2 0.03 0.00 0.01 -.10 0.17
Reputation 5 0.68* 0.04 0.12 0.38 0.99
Transparency 9 0.24* 0.26 0.06 0.08 0.40

Note. *Denotes significance at the p < .05 level. ** s?, = sampling error variance; s

o = observed variance.

Trust in Al depends both on human and Al characteristics
Kaplan, A. D., Kessler, T. T., Brill, . C,, & Hancock, P. A. (2023). Trust in artificial intelligence: Meta-analytic findings.

Human factors: The Journal of the Human Factors and Ergonom
https://doi.org/10.1177/00187208211013988

ics Society, 65(2), 337-359.
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Summary

Actuarial judgement: Actuarial judgment has direct links to machine learning
techniques because it often implies using statistical models that learn from data
to perform estimation or categorization tasks.

Overfitting: Overfitting occurs when models’ predictions are tuned to noise
rather than signal in available data and more complex models are not always
better because such models may be affected by noise; machine learning
techniques offer potential remedies, including regularization, cross-validation,
and ensemble methods.

Bias: A problem emerging from the use of actuarial approaches is the codifying
of undesired “opinions” in code; cconceptual frameworks exist for investigating
and mitigating bias in machine learning applications, typically involving some
form of auditing models for specific biases.

Algorithm adoption: actuarial approaches are not always applied in practice;
there is an ongoing academic debate centered around the reasons for lack of
adoption of algorithms in professional settings, including the role of training,
expectations, incentives, etc.; more work is needed...
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